Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations.

نویسندگان

  • Pick-Wei Lau
  • Alan Grossfield
  • Scott E Feller
  • Michael C Pitman
  • Michael F Brown
چکیده

Rhodopsin is currently the only available atomic-resolution template for understanding biological functions of the G protein-coupled receptor (GPCR) family. The structural basis for the phenomenal dark state stability of 11-cis-retinal bound to rhodopsin and its ultrafast photoreaction are active topics of research. In particular, the beta-ionone ring of the retinylidene inverse agonist is crucial for the activation mechanism. We analyzed a total of 23 independent, 100 ns all-atom molecular dynamics simulations of rhodopsin embedded in a lipid bilayer in the microcanonical (N,V,E) ensemble. Analysis of intramolecular fluctuations predicts hydrogen-out-of-plane (HOOP) wagging modes of retinal consistent with those found in Raman vibrational spectroscopy. We show that sampling and ergodicity of the ensemble of simulations are crucial for determining the distribution of conformers of retinal bound to rhodopsin. The polyene chain is rigidly locked into a single, twisted conformation, consistent with the function of retinal as an inverse agonist in the dark state. Most surprisingly, the beta-ionone ring is mobile within its binding pocket; interactions are non-specific and the cavity is sufficiently large to enable structural heterogeneity. We find that retinal occupies two distinct conformations in the dark state, contrary to most previous assumptions. The beta-ionone ring can rotate relative to the polyene chain, thereby populating both positively and negatively twisted 6-s-cis enantiomers. This result, while unexpected, strongly agrees with experimental solid-state (2)H NMR spectra. Correlation analysis identifies the residues most critical to controlling mobility of retinal; we find that Trp265 moves away from the ionone ring prior to any conformational transition. Our findings reinforce how molecular dynamics simulations can challenge conventional assumptions for interpreting experimental data, especially where existing models neglect conformational fluctuations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.

Crystal structures of engineered human beta 2-adrenergic receptors (ARs) in complex with an inverse agonist ligand, carazolol, provide three-dimensional snapshots of the disposition of seven transmembrane helices and the ligand-binding site of an important G protein-coupled receptor (GPCR). As expected, beta 2-AR shares substantial structural similarities with rhodopsin, the dim-light photorece...

متن کامل

Atomistic insights into rhodopsin activation from a dynamic model.

Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META ...

متن کامل

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.

A computational approach to predict structures of rhodopsin-like G protein-coupled receptors (GPCRs) is presented and evaluated by comparison to the X-ray structural models. By combining sequence alignment, the rhodopsin crystal structure, and point mutation data on the beta2 adrenoreceptor (b2ar), we predict a (-)-epinephrine-bound computational model of the beta2 adrenoreceptor. The model is ...

متن کامل

Retinal counterion switch mechanism in vision evaluated by molecular simulations.

Photoisomerization of the retinylidene chromophore of rhodopsin is the starting point in the vision cascade. A counterion switch mechanism that stabilizes the retinal protonated Schiff base (PSB) has been proposed to be an essential step in rhodopsin activation. On the basis of vibrational and UV-visible spectroscopy, two counterion switch models have emerged. In the first model, the PSB is sta...

متن کامل

Rhodopsin's active state is frozen like a DEER in the headlights.

T hat G protein-coupled receptor (GPCR) signaling complexes are allosteric machines par excellence is not in dispute. Agonist receptor ligands outside the cell induce catalytic guanine–nucleotide exchange on a heterotrimeric G protein inside the cell, where the ligand binding site on the receptor and the nucleotide binding site on the G protein are on the order of 8–10 nm or more apart. Althoug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 372 4  شماره 

صفحات  -

تاریخ انتشار 2007